5,129,084

1

OBJECT CONTAINER TRANSFER SYSTEM AND
METHOD IN AN OBJECT BASED COMPUTER
OPERATING SYSTEM

The present invention relates generally to multitask-
ing digital computer systems and particularly to meth-
ods and systems for managing the data structures used
by a multitasking digital computer system.

BACKGROUND OF THE INVENTION

Large computer systems generally allow many users
to simultaneously use a single computer's resources.
Such systems are herein called multitasking digitial
computer systems. Such computers include virtually all
mainframe computers and most minicomputers.

One of the primary jobs of the operating system for a
multitasking computer system is to support and keep
track of the operations of a multiplicity of users who are
running numerous concurrent processes. Thus the com-
puter’s operating system must have data structures
which represent the status of each user. Such status
information includes the memory and other resources
being used by each user process.

If every user process were completely independent,
had its own dedicated resources, and there were no
concerns about which resources each process could use,
operating systems could be relatively simple. However
in actuality, computer resources are shared and many
user processes need to access commonly used or owned
resources. In fact, each user may generate a number of
execution threads which run simultaneously and which
need to be able to share resources and to communicate
with other ones of the user’s threads.

Another concern in multitasking computer systems is
security and data integrity. Ideally, the computer sys-
tem should provide an access security system which
enables each user to control the extent or amount of
sharing of information that belongs to the user. Further,
the system should provide several types of protection.
For example, when multiple processes are allowed ac-
cess to a resource, the identity of each process which
attempts to access the resource should be tested to de-
termine if that particular process is authorized to access
the resource. The system of access control should also
provide limited “visibility” of computer resources so
that an unauthorized user cannot obtain information
about another user by repeated attempts to access re-
sources with various names. In addition, to protect data
integrity, the system must protect against simultaneous
accesses by different authorized processes.

Yet another concern of multitasking operating sys-
tems is clearing the system of “objects” (i.e., files and
data structures) which are no longer needed by any of
the system users. Ideally, the system should also be able
to automatically deallocate resources, such as input-
/output devices, no longer needed by a process.

SUMMARY OF THE INVENTION

In summary, the present invention is an object based
operating system for a multitasking computer system.
The present invention, which is also called an object
based architecture, is “object based” because it provides
objects which represent the architecture or interrela-
tionships of the system’s resources. The present inven-
tion provides an extensible, yet rigorous framework for
the definition and manipulation of object data struc-
tures.

10

—
w

20

25

30

35

40

45

55

60

65

2

Objects, generally, are data structures which store
information about the user processes running in the
system, and which act as gateways to using the system’s
resources. Resources, generally, include sets of informa-
tion, physical devices such as a tape drive, and various
programs or “operations”. Such resources are not avail-
able to a user unless the user has explicit permission to
use that resource. More specifically, access to certain
objects is required in order to use the corresponding
resources of the computer system.

All system objects have a consistent data structure,
and a consistent method of defining the operations
which apply to each type of object. As a result, it is
relatively easy to add a new type of system object to the
operating system, or to change an existing system ob-
ject.

Another feature of the present invention is a multifac-
eted access control system. The object based operating
system of the present invention supports multiple levels
of visibility, allowing objects to be operated on only by
processes with the object’s range of visibility. This al-
lows objects to be made private to a process, shared by
all processes within a job, or visible to all processes
within the system.

In addition to visibility control, access to each object
is controlled through an access control list which speci-
fies the processes authorized to access the object, and
the types of access that are allowed. An object with a
restricted access control list can be associated with a
“privileged operation”, thereby restricting use of the
privileged operation to those user processes authorized
to access the corresponding object. An object can fur-
thermore be allocated to a specified job or process to
protect the object from use by others, thereby denying
access by otherwise authorized processes.

Yet another feature of the present invention concerns
‘“‘waitable objects”, which are objects used to synchro-
nize the operation of one or more processes with one
another or with specified events. The present invention
provides routines for generating new types of waitable
objects without modifying the operating system’s ker-
nel. More particularly, a set of several different types of
predefined kernel synchronization primitives can be
embedded in user defined objects, thereby enabling
ordinary programmers and system users to define and
generate waitable objects.

BRIEF DESCRIPTION OF THE DRAWINGS

Additional objects and features of the invention will
be more readily apparent from the following detailed
description and appended claims when taken in con-
Jjunction with the drawings, in which:

FIG. 1 is a block diagram of a computer with a mul-
titasking operation system.

FIG. 2 is a block diagram of the virtual memory
spaces of several concurrently running user processes.

FIG. 3 is a block diagram showing how data struc-
ture objects in the system are organized in a three level
hierarchy.

FIG. 4 is a block diagram showing the hierarchical
relationship between a user object, a job, the processes
for a job, and the execution threads for a process.

FIG. § is a block diagram showing the range of ob-
jects visible to a particular execution thread.

FIG. 6 is a block diagram of the container directory
and object container data structures at one level of the
three level hierarchy shown in FIG. 3. FIG. 6A is a



